How we did it:
For any feedback, any questions, any notes or just for chat - feel free to follow us on social networks
John Viega, Matt Messier, Pravir Chandra
Most applications these days are at least somewhat network aware, but how do you protect those applications against common network security threats? Many developers are turning to OpenSSL, an open source version of SSL/TLS, which is the most widely used protocol for secure network communications. The OpenSSL library is seeing widespread adoption for web sites that require cryptographic functions to protect a broad range of sensitive information, such as credit card numbers and other financial transactions. The library is the only free, full-featured SSL implementation for C and C++, and it can be used programmatically or from the command line to secure most TCP-based network protocols. Network Security with OpenSSL enables developers to use this protocol much more effectively. Traditionally, getting something simple done in OpenSSL could easily take weeks. This concise book gives you the guidance you need to avoid pitfalls, while allowing you to take advantage of the library?s advanced features. And, instead of bogging you down in the technical details of how SSL works under the hood, this book provides only the information that is necessary to use OpenSSL safely and effectively. In step-by-step fashion, the book details the challenges in securing network communications, and shows you how to use OpenSSL tools to best meet those challenges. As a system or network administrator, you will benefit from the thorough treatment of the OpenSSL command-line interface, as well as from step-by-step directions for obtaining certificates and setting up your own certification authority. As a developer, you will further benefit from the in-depth discussions and examples of how to use OpenSSL in your own programs. Although OpenSSL is written in C, information on how to use OpenSSL with Perl, Python and PHP is also included. OpenSSL may well answer your need to protect sensitive data. If that?s the case, Network Security with OpenSSL is the only guide available on the subject.
Niels Ferguson, Bruce Schneier
Discusses how to choose and use cryptographic primitives, how to implement cryptographic algorithms and systems, how to protect each part of the system and why, and how to reduce system complexity and increase security.
David Hook
Provides information on how to include cryptography in applications.
Kevin Kenan
Shows companies how to secure their databases with cryptography, thereby helping them comply with a bevy of new regulations.
Edward G. Amoroso
Tutorial in style, this volume provides a comprehensive survey of the state-of-the-art of the entire field of computer security. First covers the threats to computer systems (which motivate the field of computer security); then discusses all the models, techniques, and mechanisms designed to thwart those threats as well as known methods for exploiting vulnerabilities; and closes with an exploration of security evaluation of computer systems--the science and art that attempts to grade a particular implementation of computer security. For engineers and scientists interested in computer security.
Alfred J. Menezes
A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.
Christof Paar, Jan Pelzl
Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.